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Abstract 

A computational study on the dynamics of single droplets is performed in two gas flows at moderately 
higher Reynolds numbers, one is Poiseuille flow in which gas is either nitrogen or helium and the other one is 
counterflow formed by two opposed streams of nitrogen. The focus of the study is to review the methodologies 
used for representing the effects of flow nonuniformity and relative acceleration on droplet motion in moderately 
high Reynolds numbers. The motion of the droplets is observed to be affected by the flow nonuniformity and 
unsteadiness, characterized respectively by dimensionless parameters K and A,, and the effects due to 
nonuiformity and rate of change of relative velocity are separable. It is determined that acceleration and 
deceleration affect the drag and lift on droplets in dissimilar ways. The lift force caused by flow nonuniformity is 
in the same direction of K in Poiseuille flow, whereas it is in the opposite dircction of K in countemow. It is noted 
that the radius of curvature of droplet trajectory affects lift force more strongly than drag force, Modified 
correlations for the drag and lift coefficients as function of the Reynolds number and dimensionless parameters 
characterizing the flow nonunifomity and unsteadiness are proposed. 
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NOMENCLATURE 

Acceleration factor m 

Added-mass drag coefficient Re 

Drag coefficient ", 
Steady-state drag coefficient v, 

Lift coefficient P 

Droplet diameter P 

Gravlty K 

Basset hstory drag coefficient x, 

The deformahon rate tensor V 

The coefficient of SafEnan 's 
lift force 

Mass 

Droplet Reynolds number, Re = DdV,/v, 

Velocity component in i-direction 

Maptude of relative velocity 

Displacement in i-direction 

Density 

Viscosity 

Kinematic viscosity 
Nonuniformity factor 

Subscripts 
g Gas 
d Droplet 

i=l Radial direction 
i=2 Axial direction 
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1. Introduction 

One aspect of spray computation research which remains mostly unexplored is the accurate 
representation of the drag and lift forces operative on droplets as they undergo a highly complex, 
curvilinear, unsteady motion on a turbulent flow field. The droplet dynamics models being used currently 
in spray computations consider the standard drag force only; the effects of flow nonuniformity and 
droplet relative acceleration on the droplet drag and lift forces are not considered. In addition, the effect 
of unsteadiness on the motion of a droplet traveling in a curvilinear trajectory is not considered. A 
number of studies (Clift et al., 1978, Leal, 1980, and Pun and Libby, 1989, 1990) have found that these 
effects can significantly alter the droplet motion by changing the net drag force and introducing a 
significant lift  force. Clearly, the trajectories obtained without consideration of these forces can be a 
significant source of error in a comprehensive spray computation. 

In the analysis of multiphase flows, the particle shape is often assumed to be spherical for 
simplicity and the drag on a sphere is thought to have been well-understood at low Reynolds numbers. 
Many researcher have sought a general equation of motion to determine the trajectory of droplets in an 
unsteady, nonuniform flow, Originally Basset (1888), Boussinesq (1885), and Oseen (1927) developed a 
force expression, known as BBO equation, for a slowly moving, accelerating, rigid sphere in a still fluid. 
Later, Tchen (1947) extended the BBO equation to incorporate the effects of a temporally varying flow 
field on particle transport. Corrsin and Lumley (1956) modified Tchen's equation to account for spatial 
nonuniformity of the flow field. Riley (1971) revised Corrsin and Lumley's equation to properly account 
for the effect of the undisturbed flow on a particle's motion. Maxey and Riley (1983) modified the 
equation of Tchen (1947), and they suggested the following equation for a small rigid sphere in a 
nonuniform flow: 

The derivative d/dr denotes a time derivative following the moving sphere, and the derivative D/Di the 
time derivative following a fluid element. The terms on the right hand side correspond in turn to the 
effects of viscous Stokes drag, pressure gradient of the undisturbed flow, added mass, Basset history 
term, and buoyancy. 

The modified BBO equation and the above equation have been widely used for the study of the 
motion of small droplets in a fluid (Lharo and Lasheras, 1989, and Liang and Michaelides, 1992). It 
should be noted, however, that both the equations are restricted to the Stokesian flow or "creeping 
flow", since the convective terms are omitted in their derivation. Unfortunately, no theoretical expression 
is available for the force on droplet at higher Reynolds number, if the effects like rotation, flow 
nonuniformity, and unsteadiness are added to the problem. Thus, some experimental work has been done 
to study the effects of flow nonuniformity and droplet acceleration at higher Reynolds number separately. 
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Odar and Hamilton (1964) used an experimental study and obtained correlations for the effects of 
added mass term and Basset history term at Reynolds number values up to 62. They expressed the total 
drag force by the use ofthe empirical coefficients C,,,C, and C,,: 

where C,,, C, and C,, are, respectively, the steady-state, added-mass and history drag coefficients. C,, 
is defined later in Eq. (14). Based on their measurements, Odar (1966) suggested the empirical formulas 
for C, and C,, by introducing a nondimensional acceleration parameter A, 

Odar (1966) confirmed that the empirical formulas for C, and C,, derived for a simple harmonic 
motion, are valid for the free fall of a sphere in a viscous fluid. Hughes and Gililand (1952) and Hjelmfelt 
and Mockros (1967) also predicted that a sphere which falls freely experiences drag higher than that 
given by the Stokes coefficient as it accelerates to its terminal velocity for higher Reynolds number. Tsuji 
and Tanaka (1990) investigated the drag on a sphere in a periodically pulsating flow experimentally for 
Reynolds number in the range 8000 < Re < 16,000. Their results show that the drag increases in the 
accelerating flow and decreases in the decelerating flow. Odar (1968) provided data on the drag of a 
sphere along a circular path in the Reynolds number range from 6 to 185 , which shows that the effects of 
the added mass and the history of the motion increase for this case whereas the contribution from the 
steady-state drag remains the same as that in a rectilinear motion. Contrary to the above, there is another 
group of works showing the opposite results. For instance, Temkin and Kim (1980) and Temkin and 
Melta (1982) obtained the drag by observing the motion of sphere in a shock tube and modified the drag 
coefficient C, including the effects of unsteadiness. Their results show that acceleration decreases and 
deceleration increases droplet drag. Besides Temkin and Kim (1980) and Temkn and Mehta (1982), 
Ingebo (1956) reported results showing the same trend. 

A thorough review of the effects of flow nonuniformity on particle motion is given by clift (1978) 
and leal (1980). The additional force caused by flow nonuniformity may be decomposed into a drag force 
in the direction of relative velocity and a lift force normal to the drag. In order to develop useful 
correlations, the effect of flow nonuniformity is usefully represented in terms of a nondimensional 
parameter K and the droplet Reynolds number (Pun and Libby, 1990). Eichhom and Small (1964) 
suspend large spheres in a Poiseuille flow at several inclinations of the tube and obtain lift and drag data 
in the Reynolds number range of 80 to 250. Safhan (1965) studies theoretically the lift on a small 
sphere in a slow shear flow. Dandy and Dwyer (1988) present numerical simulation for a neutrally 
buoyant spherical particle in a steady, linear shear flow over a Reynolds number range of ten to one 
hundred. Their results indicate that for a given rate of shear, the lift coefficient is inversely proportional 
to the square root of the Reynolds number for lower Reynolds number (less than ten) and constant at 
higher Reynolds number. Pun and Libby (1990) conduct experiments on droplets moving in a Poiseuille 
flow in the Reynolds number range of 0 7 to 27 and K in the range of 10.' to 6x 10.' and determined that 
the droplets experience drag larger than that indicated by the standard drag. Following the reasoning of 
Drew (1978) they attribute this increase in the drag to the effects of flow nonuniformity and empirically 
correlate the increase in drag and lift coefficients. 
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In spite of the abundance of literature on the effects of flow unsteadiness and nonuniformity, there 
are no previous correlation to calculate the drag and lift forces affected simultaneously by both flow 
nonuniformity and relative acceleration at higher Reynolds number. In the present paper, a computational 
study of motion of droplets in Poiseuille flow and counterflow is reported. The major focus of the study 
is to present a detailed comparison of the droplet trajectories predicted by five different approaches with 
the experimental data of Pun and Libby (1990, 1989) and to propose modified correlations for the effects 
of flow nonuniformity and relative acceleration at moderately high Reynolds number. 

2. The Physical Situation 

The droplet motions in Poiseuille flow and counterflow are studied. The flowfields are identical 
to those of Pun and Libby (1990) and Pun and Libby (1989), and the reader is refereed to their study for 
a detailed description. A Poiseuille flow is established in either nitrogen or helium at room temperature in 
a vertically mounted quartz tube of length 1.83 m and inner diameter of 2R=2.14 cm. Liquid droplets in 
an upward flowing Poiseuille flow of gases experience a downward velocity relative to the flow. A 
counterflowing flowfield is established by flowing gaseous nitrogen from two opposed ducts. The ducts 

+have a radius of 2.3 cm and are placed 1.5 cm apart. The flow exits each duct with a discharge velocity 
of 31.7 c d s .  A droplet generator, the nozzle of which is placed in the bottom duct, introduces n- 
heptance droplets of 100 and 130 p m  diameter into the gas stream just before it enters the counterflow. 
The flowfield is described by Libby et.al. (1989). The accuracy of the gas velocity components is 
confirmed by comparison with the experimental results of Chen et al. (1987) and the LDV measurements 
of Pun and Libby (1989). 

3. The Equation of Motion 

As reviewed above, several different approaches have been used in the past to represent the 
The following approaches are effects of acceleration and flow nonuniformity on droplet motion. 

employed in this paper. 

Approach (1): The equation of motion, based on Eq.(l), in which the unsteady effect is 
introduced by using the empirical coefficients, C, and C,,, and the lift force is included, is given as 

K=2.594 is the coefficient of Saffman's lift force, and the deformation rate tensor 4, is defined as 
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where 

The expression of lift force used in Eq.(3) is a generalization of the expression provided by Saffman 
(1965) for three-dimensional shear fields, which is restricted to small droplet Reynolds number. In 
addition, the droplet Reynolds number based on the relative droplet velocity must also be smaller than the 
square root of the droplet Reynolds number based on the shear field. The formulas suggested by Odar 
(1966) are used to calculate C, and C, 

Approach (2): Following the equations suggested by Temkin and Mehta (1982) and others, the 
The effect of flow effect of unsteadiness is considered by modifying the drag coefficient C,. 

nonuniformity on drag and lift is, however, represented in a manner similar to approach (1). 

d, and urn are the same as defined above 

Approach (3): The effects of flow nonuniformity and unsteadiness are represented in terms of 
additional lift and drag coefficients If we assume that both lift and drag forces influence the droplet, then 
the force on the droplets acceleration components in the radial and axial directions are 

where C, and C, are the coefficients of lift and drag respectively. 

Pun and Libby (1990) suggest the following correlation for drag and lift coefficients: 

2 
Re 

c, = c,, (1 + 575(-)3’4) 

rz 
Re 

c, = 20c,,(--)~/~ 

Approach (4): The modified correlations proposed in the present study are: 

rz 
Re 

c, = C,J 1 + C,(-)”) - C“, . Ac 
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2 C, = C, . CDs(-)3’4 - C,, . A, 
Re 

where C,, C,,, C, and C,, are constant. 

In Poiseuille flow: CAD = 0.42, C,, = 5 x IO” ,  when A, < 0.0 

C, = 575.0, C, = 50.0 

In counterflow: C,, = 0.52, C,, = 0.15, when A, < 0.0 

C,,=O.2, C,,=O.l5, whenA,>0.0 
C, = 725.0, C, = 400.0 

A, is defined by Temkin and Kim (1980). 

Approach (5): The fifth approach considers only the viscous and pressure drag represented by 
C,, . For low Reynolds number, C,, is given by the Stokes drag, whereas for high Reynolds number, it 
involves Stokes drag and a correction such as proposed by Putnam (1961), Le., 

24 Rezp 
Re 6 

c,, =-.(I+-) 

4. Results and Discussion 

The fourth order Runge-Kutta method has been used to calculate the droplet velocity and 
displacement. The effects of flow nonuniformity and relative acceleration are investigated by studying the 
droplet trajectories and displacement histories in both radial and axial direction predicted by the five 
approaches and experimental data. 

Figures 1 shows the droplet trajectories and displacement histories in both radial and axial 
directions predicted by above five approaches, and obtained experimentally in Poiseuille flow. Three 
cases have been considered and each case has different initial conditions, and also different droplet size or 
different fluid. In this paper only one case is shown. As seen in Fig.1, the droplets introduced off the axis 
migrate toward the axis. Comparing the displacement histories in radial direction, it is noted that the 
values predicted by approach ( 5 )  are greater than those determined experimentally. In addition, the 
existence of a lift force which moves the droplet towards the axis is indicated. The sign of the lift force is 
the same as that given by SaEman (1965). the approach (3) 
underpredicts the lift force whereas approach (1) and (2) overpredict the lift force. Note that the error in 
the trajectory prediction is mainly due to the inaccurate representation of the lift force. In approach (1) 
and (2), the lift force is evaluated by using the Saffman lift force expression, which is restricted to low 
Reynolds number situations. Approach (3), based on the correlation of Puri and Libby (1990), considers 
the flow nonuniformity effect, but may be improved further by including the acceleration effect. The 
modified equation (13) used in approach (4) includes the latter effect, and provides a better 
representation for the lift coefficient. 

The droplet displacement in axial direction is influenced mostly by drag force. The larger the drag 
force, the shorter the distance traveled by the droplet in the axial direction, when droplets move in the 

Compared with experimental data, 
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opposite direction of gas flow. As demonstrated in Fig.l, approach (I)  and (2) underpredict the drag 
force. A plausible explanation for the underprediction of the drag force by approach ( I )  is that it employs 
correlations of Odar and Hamilton (1964), which are based on an experimental study of droplets in 
harmonic motion. If the droplet moves along a curved path, the unsteady effect will increase. As the 
result of curvilinear trajectory of droplets and inaccurate consideration of nonunifonnity, the approach ( I )  
underpredict the drag force. Similarly the error in using approach (2) is caused by an inappropriate 
application of the formula proposed by Temkin and Melta (1982) and S a h a n  (1965) lift force 
expression. In order to modify approach (3) which underpredicts the drag force, we include the unsteady 
effect. Consequently, the droplet trajectories as well as displacement histories in both radial and axial 
directions predicted by the modified correlation are in better agreement with those determined 
experimentally. 

The droplets in counterflow experience a much more complex, curvilinear, and unsteady 
(including both acceleration and deceleration) motion. Two cases have been studied with different 
droplet size and initial condition. In case 1 ,  droplet diameter is 100 pm. In case 2, droplet size is 130 
pm, and the droplet initial velocity in axial direction is much higher than that in radial direction. 

As noted from Figs2 and 3, the trajectories predicted by approach ( 5 )  are much different from the 
experimental data, especially in radial direction, indicating lift force must be important in these cases. The 
presence of lift in a curvilinear trajectory is not surprising. In experiments on the motion of a sphere 
along a curvilinear path in the Reynolds number range of 30 to 80, Odar (1968) finds that the lift is as 
high as ten percent of drag. In their study on droplets in a counterflow, Puri and Libby (1989) contend 
that the droplets are influenced by the skewness of the acceleration vector from the relative velocity 
vector. As a result, the net force due to acceleration is not collinear with the relative velocity. 
Consequently, the consideration of acceleration effects in a curved trajectory requires that both the drag 
and lift due to acceleration must be calculated. Thewsteady effect on drag and lift is given in Eq.(12) 
and Eq.(13). From these relations it is seen that the deceleration will increase drag force, and 
acceleration will decrease drag force. This is consistent with the results of Temkin and Mehta (1982). 

It is known that the flow nonuniformity affects both drag and lift force. It is not clear, however, 
as to how the direction of lift force changes with the sign of K. In Poiseuille flow, K is always positive. 
According to Saflinan, if the particle lags behind the fluid, a radially inward lift force exists causing their 
migration toward the tube axis. I f ,  on the other hand, the particle travels faster than the fluid, the effect 
will move the particle away from the axis, i.e., the lift force coefficient follows the sign of K. In 
counterflow, the plots of C, and K indicate that the direction of C, is opposite to that of IC. In the 
present study, this observation is used to determine the sign of C, in Eqs. (12) and (1 3). 

For approach (4), comparing the constants C,,,C,,,C,, and C, in Poiseuille flow with those in 
counterflow, it is noted that the constants CAD and C, used in calculating drag coefficient are not much 
different in the two flows. However, the constants C,, and C, used in calculating lift coefficient are 
much larger in counterflow than those in Poiseuille flow. It indicates that the radius of curvature of 
droplet trajectory, which is much larger in Poiseuille flow than in counterflow, but change continuously 
along the droplet trajectory in the counterflow, may affect the lift force, and the larger the radius of the 
curvature of droplet trajectory, the less effect on the lift force. Finally, a plausible explanation for the 
departure of displacement histories in radial direction predicted by approach (4) and experimental data 
(Figs. 2(b) and 3(b)) is attributed to  the fact that the correlations used in approach (4) do not consider the 
effect of changing curvature and skewness of acceleration vector along the droplet trajectory, 

' I  

f l  

1390 



5. Conclusions 
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The droplet motion under the influence of flow nonuniformity and relative acceleration has been 
investigated in Poiseuille flow and counterflow. Several approaches that are currently in use for 
representing these effects have been evaluated. It is found that the application of Odar's formula, 
Temkin's formula and Pun and Libby's correlation is not accurate enough to predict the trajectories 
obtained from previous experimental studies. It is indicated that calculations of K and A, can be 
performed for both Poiseuille flow and counterflow, so that the effects due to nonuniformity and rate of 
change of relative velocity are separable. It is determined that acceleration and deceleration affect the 
drag on droplets in dissimilar ways, which is consistent with the results of Temkin and Mehta (1982). 
The lift force caused by flow nonuniformity is in the same direction of K in Poiseuille flow, and in the 
opposite direction of K in counterflow. It is seen that the radius of curvature of droplet trajectory affects 
lift force more strongly than drag force, and the larger the radius of the curvature of droplet trajectory, 
the less effect on the lift force. Modified correlations for the drag and lift coefficients as function of the 
Reynolds number and dimensionless parameters characterizing the flow nonuniformity and unsteadiness 
are proposed. 

Since the correlations proposed in the present work is based on the analyses of the experimental 
data of Pun and Libby (1990, 1989), they may not be applicable to other situations that are significantly 
different from these experiments. The effects of the radius of curvature of droplet trajectory and the 
skewness of the acceleration vector from the velocity vector on the drag and lift force have not been 
studied in detail in the present work. Clearly, more experimental and theoretical studies are needed to 
analyze these effects on the drag and lift force. 
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